

Implementing Advanced Site Characterization Tools

High-Resolution Site Characterization at Petroleum Release Sites

Introduction

- What are ASCTs & HRSC?
- Introduction to ASCTs for HRSC of Petroleum Releases
- HRSC When & Where?
- Structuring a Successful HRSC Investigation
- Case Studies & Lessons Learned

Advanced Site Characterization Tools (ASCTs)

What are ASCTs?

- Incorporate direct sensing of the parameter of interest through direct contact or precise discrete sampling [ITRC, 2019]
- Provide scale-appropriate measurement and sample density to define contaminant distributions and the physical context in which they reside
- Allow for greater data density and enhance the practitioner's understanding of site-specific contaminant mass discharge and mass flux.
- This greater degree of certainty supports development of robust and reliable CSMs and faster and more effective site cleanup

High-Resolution Site Characterization (HRSC)

What is HRSC?

- Application of ASCTs for site investigation
- Real-time data used to intuitively progress the investigation
- HRSC typically includes 2D and 3D Data Visualizations of the CSM

High-Resolution Site Characterization (HRSC)

HRSC vs Traditional Site Characterization

High Resolution Site Characterization

Produces a more detailed characterization of mass flux

- Reduce uncertainty through scale appropriate measurements
- Adaptive approach for single mobilization delineation
- Robust and reliable conceptual site models
- Develop right-sized, targeted remedies that focus on the mass that matters

Traditional Site Characterization

- Iterative work plans
- Soil and groundwater sampling
- Geologic and hydrogeologic testing
- Time consuming analysis of data
- Reporting followed by additional field sampling to complete delineation
- Poor differentiation between contaminant phases
- Poor characterization of subsurface heterogeneities

Direct Sensing Tools

- Membrane Interface Probe (MIP)
- Optical Imaging Profiler (OIP-UV & OIP-G)
- LIF Ultra-Violet & Tar-Specific Green Optical Screening Tools (UVOST & TarGOST)
- Electrical Conductivity (EC)
- Hydraulic Profiling Tool (HPT)

Membrane Interface Probe (MIP)

- Screening tool used to log relative concentration of VOCs with depth
- Steel probe equipped with a semipermeable membrane
- Trunk line pre-strung through the drill rods that connects the probe to carrier gas and uphole sensors
- Deployed with either percussion driven direct push machines or push-only (CPT)

Membrane Interface Probe (MIP)

- Probe is advanced at 1-foot intervals
- Volatilization of contaminants enhanced by heating the media adjacent to the heating block
- VOCs released from the formation cross the membrane and enter the carrier gas flow where they are carried uphole to the detectors (PID, FID, XSD).
- Typically coupled with EC or HPT

Membrane Interface Probe (MIP)

- Typical production rate of 100 to 300 feet per day
- Grid layout with 30 foot initial spacing
- Progress investigation "clean-to-dirty" to minimize system clean-up wait times
- Confirmation soil and groundwater sampling recommended
- Comparison of EC or HPT data to soil boring logs

Optical Imaging Profiler (OIP-UV)

- Uses a combination of 275 nm UV LED, visible spectrum white light LED, and an integrated downhole camera
- Advanced via direct push percussion probing or push only (CPT) methods
- The camera captures images of fluorescence response at 30 frames/sec with one image saved for every 0.05 ft of probe advancement

Optical Imaging Profiler (OIP-UV)

- Can identify the presence and distribution of NAPL containing PAHs
- Logs display percent area of fluorescence of the captured image
- The average area illuminated (% fluorescence) per frame is calculated using multiple filtered frames from the 0.05 ft interval
- Response in the visible light spectrum only, blind to UV range fluorescence response

Optical Imaging Profiler (OIP-UV)

- Typical production rate of 150 to 300 feet per day
- Grid layout with 30 foot initial spacing
- Progress investigation "dirty-to-clean"
- Confirmation soil and groundwater sampling recommended
- Comparison of EC or HPT data to soil boring logs
- Also available with a 520 nm green light LED (OIP-G) for detection of heavier NAPLs (creosote, coal-tars)
- Does not differentiate product types

Ultra-Violet Optical Screening Tool (UVOST)

- Developed by Dakota Technologies in 1990's, widely known in the environmental industry as "LIF"
- LIF excitation of PAHs
- Direct sensing of mobile and residual LNAPL
- Provides real-time data of fluorescence response vs. depth

Ultra-Violet Optical Screening Tool (UVOST)

 OST translates fluorescence emission into a multiwavelength waveform

Ultra-Violet Optical Screening Tool (UVOST)

UOVST Output allows for differentiation of LNAPL types

15

Ultra-Violet Optical Screening Tool (UVOST)

UOVST Output allows for differentiation of LNAPL types

- Ultra-Violet Optical Screening Tool (UVOST)
 - Differentiates product types in real-time
 - Fluorescence displayed in %RE

Coupled with EC dipole or HPT

Ultra-Violet Optical Screening Tool (UVOST)

Ultra-Violet Optical Screening Tool (UVOST)

- Typical production 200 to 400 ft per day
- Progress investigation "dirty-toclean"
- Grid layout with 30 foot initial spacing
- Confirmation soil and groundwater sampling recommended

ASCT Summary

ASCT	Product Types	Lithology	Productivity (Ft / Day)	Limitations
MIP	VOCs	Direct push / hammerable only	100 - 200	High concentrations / LNAPL problematic. Limited distinction of product types.
OIP-UV	Light PAHs / LNAPLs	Direct push / hammerable only	150 - 300	Cannot differentiate product types. False positives from naturally occurring materials.
OIP-G	Heavy PAH / LNAPLS (creosote/coal tars	Direct push / hammerable only	150 - 300	Cannot differentiate product types. False positives from naturally occurring materials.
UVOST	Light PAHs / LNAPLs	Direct push / hammerable only	200 - 400	False positives from naturally occurring materials.
TarGOST	Heavy PAH / LNAPLS (creosote/coal tars	Direct push / hammerable only	200 - 400	False positives from naturally occurring materials.

HRSC – When & Where?

- Initial RI at high-risk sites for rapid advancement of the CSM
- To alleviate CSM data gaps when receptors are threatened or impacted
- Informed Remedial Design
- ITRC ASCT Selection Tool & ASCT Direct Sensing Checklist

Structuring a Successful HRSC Investigation

Goal of HRSC Investigation

- To define the extent and magnitude of horizontal and vertical contaminant distribution, particularly LNAPL distribution
- HRSC Investigation Planning
 - Discuss your project with the HRSC provider to assist with tool selection and investigation design
 - Learn the technology before going into the field
 - Be prepared to expand the investigation
 - Understand the data necessary for CSM visualization

Structuring a Successful HRSC Investigation

HRSC Investigation Basics:

- Start with 30-foot grid spacing with borings extending to at least 10' below the groundwater surface
- Advance initial borings in areas known to have the highest impacts
- Use source area response and / or waveforms to help guide the investigation
- Maintain consistent terminal boring depths
- Use real time data to inform decision process and progress the investigation
- Define the horizontal and vertical boundaries. In-fill with additional borings for higher resolution data within the source area or LNAPL body.

Structuring a Successful HRSC Investigation

HRSC Investigation Basics:

- Non-Detects Are Your Friend!
 - Non-detect borings or depth intervals allow for "bounding" of the plume and are critical in truly defining extent and magnitude.
- Correlate EC or HPT logs with continuous soil cores for lithology
- Accurately map the vertical and horizontal locations of each boring relative to site features (buildings, utilities, etc.)
- Collect a variety of correlative samples from each identified product type and from a range of response intensity
- Implement multiple HRSC tools "HRSC Toolkit" method

Project Background Information

- Legacy petroleum release site in downtown Polson, initial investigation in early 1990s
- 13 facilities with releases and individual PRP ownership
- Large undefined LNAPL plume, LNAPL present in various monitoring wells across the site
- Complex lithology consisting of fine-grained, varved lakebed sediments
- Sensitive surface water receptor (Flathead Lake)
- Various regulatory agencies including MTDEQ, City of Polson, Lake County, CSKT Tribe & USEPA

HRSC Investigation Details

- Investigation included 138 UVOST[®] borings completed over 10-day period
- Geospatial data points recorded for each boring using sub-decimeter GPS equipment
- Daily uploads of UVOST[®] response and GPS data
- UVOST[®] analyst provided daily 2D LNAPL isoconcentration maps as a tool to guide the investigation
- Depth of borings was correlated to high and low pool lake elevations

3D LNAPL Plume Depicting 1 %RE Four Corners Release Sites Polson, MT (Vertical Exaggeration = 5:1)

Case Studies & Lessons Learned

- Investigation successfully delineated horizontal and vertical extent of LNAPL plume allowing for targeted LNAPL recovery
- Completed in 10 field days with total cost of under \$100,000
- Previous investigations totaled over \$1MM and were not successful in delineating plume
- Greatly advanced the CSM through collection of detailed LNAPL distribution, geophysical (EC) and geospatial data
- Background information and thorough planning was key in understanding the HRSC data needed for CSM development
- Provided HRSC data for targeted remedial design

Questions?

References:

- ITRC: <u>Implementing ASCTs</u>
- Dakota Technologies UVOST: <u>Dakota Intro to UVOST & LIF</u>
- GeoProbe Systems OIP: <u>OIP | Geoprobe Systems® Fluorescence Detector</u>
- Dakota Technologies MIP: <u>Membrane Interface Probe (MIP) & MiHpt</u>